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We present a novel further development of overlapping finite elements. The formulation of the enhanced
elements is based on the earlier published elements but has an important new ingredient which renders
the enhanced formulation more effective with respect to the evaluation of the element matrices and the
solution of the governing finite element equations. The novel ingredient is that the elements are no
longer based on a function used in meshless solution schemes; hence the elements provide more gener-
ality and ease of use. We first give the formulation which is applicable to two- and three-dimensional
analyses of solids, give new insights, and then present an evaluation considering the required numerical
integration, geometric distortion-insensitivity and the conditioning of the resulting finite element equa-
tions. In the study of the element characteristics, we also give some illustrative example solutions that
show the performance of the elements in linear static analyses of two- and three-dimensional solids.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Finite element analysis is now widely used in engineering prac-
tice. However, the potential of finite element analysis has not been
fully exploited yet, frequently due to difficulties in meshing of the
analysis domain due to its geometric complexity [1]. To circum-
vent the effort of meshing, various meshless methods have been
proposed [2,3]. Meshless methods provide much flexibility in dis-
cretization, but the use of such techniques, those not involving
numerical factors for stability, in practice is often restricted by
the prohibitively expensive numerical integrations [1,4–6].

In our earlier papers [7–11], we proposed the use of overlapping

finite elements (OFE) and the AMORE scheme for ‘‘automatic

meshing with overlapping and regular elements”. The develop-
ment of the overlapping finite elements was inspired by the formu-
lation of the method of finite spheres in which the Shepard
function is used with a radius for each sphere [2,4,7]. However,
quite different from the use of spheres, the overlapping elements
we proposed use no rational functions, or their derivatives, in the
element matrices [10,11], which renders the numerical integration
much more tractable. An overlapping element has also the same
element connectivity as the traditional element. Hence the ele-
ment can be embedded into a mesh of traditional elements and
can directly be used in the same way as a traditional finite element.
Another important point is that the overlapping elements maintain
polynomial completeness when distorted, and hence are quite
distortion-insensitive [1,11].

Based on these element behaviors, the AMORE scheme fills the
analysis domain mostly with traditional geometrically-undistorted
elements – which are effective because they are not distorted [12]
– and uses the overlapping finite elements only to discretize
regions where distorted elements need be used. The AMORE
scheme therefore spans an effective mesh quite efficiently over
the complete geometric domain to be analyzed.

However, the earlier proposed overlapping element formula-
tions contain some ingredients that might be improved. Firstly,
the construction of the displacement interpolation is not as effec-
tive as we desire. Secondly, the use of a radius pertaining to each
node would ideally not be necessary, and thirdly the condition
number of the resulting stiffness matrix can become large, in par-
ticular when a large radius for the nodes is used.

Our improvements in the formulation of the overlapping finite
elements presented in this paper address these three points. A
Shepard function is no longer used to construct the displacement
interpolations which renders the formulation more efficient, and
a radius for each node is no longer used which also has a beneficial
effect on the conditioning of the equations. Furthermore, the same
element formulation is used for any of the basic low-order ele-
ments we consider in this paper for two- and three-dimensional
analyses.

A major issue in generalizing or enriching finite element dis-
cretizations is that the resulting equations may be linearly depen-
dent. For example, the generalized finite element method with
polynomial enrichments could suffer from the problem of linear
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Fig. 1. Triangularization and overlapping elements; (a) The triangular element of three nodes i, j, k is part of three overlapping polygonal elements; (b) The three polygonal
elements are denoted by the capital letters I, J, K.

Table 1
Numerical integration schemes used for the new overlapping finite elements; GQ
denotes the Gauss quadrature; the numbers in brackets give the refs.

Element Linear basis Bilinear basis Quadratic basis

3-Node triangular 6 [22] 9 [22] 12 [22]
4-Node quadrilateral 3 � 3 GQ 4 � 4 GQ 5 � 5 GQ
4-Node tetrahedral 11 [23] 17 [24] 29 [24]
8-Node brick 3 � 3 � 3 GQ 4 � 4 � 4 GQ 5 � 5 � 5 GQ
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dependency [13–16]. Various approaches have been proposed to
address this issue. In an early approach, special solvers were used
to solve the linearly dependent equations [13]. More recently, spe-
cial element interpolation functions have been used with disconti-
nuities in derivatives resulting in strain jumps within the elements
[15–18]. These strain discontinuities within the elements are, how-
ever, not desirable and do not lead to optimal solutions of physical
problems with smooth strain variations, and we consider in this
paper only the analyses of such physical problems.

In the method of finite elements with interpolation covers
[19–21], the linear dependency is removed by suppressing all
cover degrees of freedom on the boundaries with prescribed
displacements. There is a loss of solution accuracy near such
boundaries, which however with a fine enough mesh is acceptable.
The technique is simple but only applicable when the 3-node
triangular or 4-node tetrahedral elements are used for two- and
three-dimensional analyses, respectively.

The governing equations of the overlapping finite elements that
we introduce in this paper exhibit no linear dependency, and the
conditioning of the equations is reasonable. The element displace-
ment interpolation functions are also smooth within an element
and result into good solution accuracy. Further, we need not
remove all degrees of freedom at the boundaries with prescribed
displacements to reach a reasonable conditioning of the stiffness
matrix.

In the following, we first introduce the new formulation in Sec-
tion 2 and present numerical aspects in Section 3. Then in Sections
4 and 5, using the new formulation and the AMORE scheme, we
solve various linear static problems and show the effectiveness of
the new elements in, both, the accuracy of solutions and the con-
Fig. 2. Local coordinates used for a node at a Dirichlet boundary; (a) Node K located at a p
dotted lines represent element edges.

2

ditioning of the governing equations. Our concluding remarks are
given in Section 6.

2. Formulation of the enhanced overlapping finite elements

We give in this section the basic equations of the formulation
focusing on the interpolations used and also discuss the imposition
of the displacement boundary conditions and the use of the ele-
ments in the AMORE scheme.

2.1. Interpolations used

Given a linear elasticity problem, we discretize in the overlap-
ping finite element method a displacement component u (e.g., x-
direction displacement) as follows.

u xð Þ ¼
XN
I¼1

hIwI ð1Þ
oint of a smooth boundary; (b) Node K located at a point of a non-smooth boundary;



Fig. 3. Undistorted and distorted elements used in the zero energy mode test; the Cartesian coordinates of nodes are given.

Table 2
Zero energy mode test on undistorted elements including the eigenvalues which we consider to be zero (the very small numbers being due to round-off in the numerical
solutions); the first, second, and third rows are for the linear, bilinear, and quadratic bases.

Element k 1; smallest k 2 k 3 k 4 k 5 k 6 k 7 k 8

3-Node triangular �7.12 � 10�8 8.66 � 10�9 1.84 � 10�7 5.47 � 105 5.47 � 105 8.38 � 105 1.35 � 106 1.35 � 106

�3.39 � 10�7 1.08 � 10�7 3.64 � 10�7 2.21 � 102 5.20 � 102 4.32 � 104 4.85 � 104 4.34 � 105

�4.88 � 10�8 1.04 � 10�8 1.66 � 10�7 1.28 � 101 1.28 � 101 2.90 � 101 5.08 � 101 6.17 � 101

4-Node quadrilateral �3.23 � 10�7 7.77 � 10�8 2.21 � 10�7 4.73 � 105 4.73 � 105 6.15 � 105 1.07 � 106 1.35 � 106

�1.97 � 10�7 �1.06 � 10�8 1.03 � 10�7 2.75 � 104 2.75 � 104 2.87 � 104 5.36 � 104 8.47 � 104

�4.29 � 10�7 �5.68 � 10�8 �1.97 � 10�8 1.41 � 102 1.41 � 102 4.66 � 102 4.66 � 102 1.61 � 103

4-Node tetrahedral �6.32 � 10�7 �3.28 � 10�7 �3.08 � 10�7 �3.35 � 10�8 1.61 � 10�7 5.33 � 10�7 8.35 � 104 8.35 � 104

�4.68 � 10�7 �2.60 � 10�7 �1.17 � 10�7 9.38 � 10�8 1.82 � 10�7 4.08 � 10�7 1.66 � 101 2.37 � 101

�1.16 � 10�9 1.30 � 10�9 9.43 � 10�9 4.09 � 10�8 4.22 � 10�8 6.92 � 10�8 6.51 � 10�1 2.57 � 100

8-Node brick �6.64 � 10�8 �5.16 � 10�8 �1.76 � 10�8 1.24 � 10�8 6.48 � 10�8 7.21 � 10�8 4.43 � 104 5.01 � 104

�5.64 � 10�8 �3.38 � 10�8 �2.87 � 10�8 2.09 � 10�8 2.70 � 10�8 7.13 � 10�8 1.25 � 103 1.25 � 103

�7.43 � 10�8 �1.52 � 10�8 �7.82 � 10�9 1.66 � 10�8 9.06 � 10�8 1.08 � 10�7 1.45 � 101 1.45 � 101

Table 3
Zero energy mode test on distorted elements including the eigenvalues which we consider to be zero (the very small numbers being due to round-off in the numerical solutions);
the first, second, and third rows are for the linear, bilinear, and quadratic bases.

Element k 1; smallest k 2 k 3 k 4 k 5 k 6 k 7 k 8

3-Node triangular �2.54 � 10�7 3.11 � 10�8 4.02 � 10�7 7.58 � 104 1.43 � 105 2.90 � 105 5.24 � 105 9.76 � 105

�2.09 � 10�7 �4.66 � 10�8 1.94 � 10�7 5.49 � 101 8.55 � 101 4.86 � 103 1.33 � 104 1.19 � 105

�3.09 � 10�7 4.23 � 10�9 1.49 � 10�7 6.21 � 10�1 2.61 � 100 5.00 � 100 5.61 � 100 3.94 � 101

4-Node quadrilateral �4.33 � 10�7 2.01 � 10�8 1.20 � 10�7 4.28 � 105 4.46 � 105 5.69 � 105 8.14 � 105 1.50 � 106

�2.56 � 10�7 2.40 � 10�8 2.57 � 10�7 1.76 � 104 1.98 � 104 2.98 � 104 3.50 � 104 1.60 � 105

�1.31 � 10�7 8.02 � 10�8 3.11 � 10�7 1.77 � 102 1.93 � 102 2.83 � 102 3.83 � 102 1.90 � 103

4-Node tetrahedral �2.81 � 10�6 �9.16 � 10�7 �5.99 � 10�7 2.25 � 10�7 4.58 � 10�7 6.41 � 10�7 2.76 � 103 3.11 � 103

�1.64 � 10�6 �2.91 � 10�7 �6.76 � 10�8 1.76 � 10�7 5.40 � 10�7 1.68 � 10�6 1.18 � 100 1.48 � 100

�1.94 � 10�7 �5.27 � 10�8 �3.77 � 10�8 4.90 � 10�8 1.53 � 10�7 1.96 � 10�7 4.37 � 10�2 6.33 � 10�2

8-Node brick �9.71 � 10�8 �8.22 � 10�9 �8.06 � 10�9 1.40 � 10�8 7.15 � 10�8 1.57 � 10�7 4.00 � 104 4.54 � 104

�4.64 � 10�8 �1.71 � 10�8 2.87 � 10�8 5.60 � 10�8 7.31 � 10�8 1.19 � 10�7 3.44 � 102 4.00 � 102

�1.02 � 10�7 �9.21 � 10�8 �3.44 � 10�9 9.21 � 10�9 1.53 � 10�8 1.62 � 10�7 4.43 � 101 4.83 � 101
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where hI is the traditional low-order finite element shape function,
N is the number of nodes of an element, and wI is the field ‘‘corre-
sponding to the polygonal element I associated with node I”, see
Fig. 1. For wI , we use

wI ¼
Xm
K¼1

/I
K uK ð2Þ
3

where m is the number of nodes of the polygonal element, we need
to construct /I

K , and uK is the unknown nodal basis function for
node K. We consider in this paper uK to be a polynomial, but other
suitable functions can also be used.

The approach in this interpolation corresponds to an ‘‘element-
overlapping” which we can interpret physically. Let us consider a
triangular element with three nodes i, j, k, hence N = 3, see Fig. 1.
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The element is part of polygonal elements consisting of triangular
elements. We label the polygonal element with center node I,
which is physically at the same location as node i, to be the polyg-
onal element I. Similarly, we label the polygonal elements with
center nodes J and K as the polygonal elements J and K,
respectively.

Assume that w is the displacement component considered here
and that using Eq. (2) we interpolate w over each polygonal ele-
ment I, J, K. Then for the polygonal element I we use m = 7 in Eq.
(2) since it has seven nodes, and similarly for the interpolations
for the polygonal elements J and K. In Eq. (1) we superpose these
three interpolations of the three polygonal elements; hence the
interpolation for the triangular element with nodes i, j, k corre-
sponds to the overlapping of three polygonal elements. We call this
triangular element an overlapping finite element. Since we use in Eq.
(1) the interpolation functions hI , we achieve that the displacement
assumption is localized to the triangular element with nodes i, j, k
and the displacements along the edges of the triangular element
are continuous over a patch of such triangular elements.

Hence Eq. (2) reduces to

wI ¼
XN
K¼1

/I
K uK ð3Þ

where N is the number of nodes of the overlapping finite element,
here N = 3. The same procedure is used to construct other overlap-
ping finite elements. The use of Eq. (3) was introduced in Ref. [10].

The key in this interpretation is to think of I in Eq. (1) as ‘‘varying
over the three element nodes of the 3-node triangular element with
each node representing a polygonal element”.

An important step in the formulation is to choose effective
interpolation functions /I

K . In earlier developments, see Refs.
[10,11], we used
Fig. 4. Two-dimensional adhoc problem; (a) Description of the adhoc problem; (b) Mesh
half and generating four elements from the element.

4

/I
K ¼

XM
i¼1

ĥi /̂
I

Ki ð4Þ

where the ĥi is the shape function of a traditional element of the
same geometry as the element formulated to allow a higher-order

variation for /I
K , and /̂

I

Ki is the nodal value for the function (note
that in this equation i is simply a dummy variable). For example,
for the formulation of the 3-node overlapping element we used
the traditional interpolation functions of the 6-node triangle, hence

M = 6 in Eq. (4), and used the Shepard function for the values of /̂
I

Ki

[10]. However, any suitable function can be interpolated, and we
use in our current work a function defined by the value of b as given
in Appendix A, which is computationally more effective.

Our overlapping finite element formulation of course satisfies –
as does the traditional finite element formulation – the partition of
unity,

u xð Þ ¼
XN
I¼1

hIwI ¼
XN
I¼1

hI

XN
K¼1

/I
K uK

 !
¼
XN
K¼1

XN
I¼1

hI /
I
K

 !
uK

¼
XN
K¼1

qK uK ð5Þ

where qK satisfies
PN
K¼1

qK ¼ 1. By virtue of the mathematical relation

between the low-order and corresponding higher-order elements
[12], we can obtain the following relation from Eqs. (4) and (5)
for the improved elements (see Appendix B)

qK ¼ hK þ b
X
J

hJ � hK
� �

ĥJK ð6Þ

where J is an element node of the overlapping element directly con-

nected to node K and ĥJK represents the element function of the
es used; the mesh refinement is performed by splitting the edges of an element in



Fig. 5. Adhoc problem solved using the new 4-node quadrilateral overlapping element with the quadratic basis and the traditional 9-node finite element; (a) Convergence of
strain energy using undistorted meshes (N = 2, 4, 8, . . ., 64); (b) Comparison between the errors obtained using the undistorted and distorted meshes (N = 4, 16, and 64); note
that the y-axis uses the linear scale; (c) Change of condition number with refinement of the undistorted mesh; (d) Change of condition number with refinement of the
distorted mesh.
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mid-side node located between nodes J and K. The function qK is
hence cubic along the element edges, and b determines the magni-
tude of the cubic terms. Note that b ¼ 0 results in the finite ele-
ment method with interpolation covers [19–21].

Considering the nodal polynomial uK in a three-dimensional
analysis, for a Cartesian coordinate system x ¼ x; y; zð Þ, we have

uK ¼ aK1 þ aK2
x� xKð Þ

h
þ aK3

y� yKð Þ
h

þ aK4
z� zKð Þ

h
þ � � � ð7Þ

where aKi is the unknown variable, xK ¼ xK ; yK ; zKð Þ of node K, and h
is equal to max

J2M
jjxJ � xK jj=2 where M is the set of nodes that are

contained in the overlapping polygonal element of node K. For
example, when the bilinear polynomial basis is employed we use

uK ¼ aK1 þ aK2
x�xKð Þ
h þ aK3

y�yKð Þ
h þ aK4

z�zKð Þ
h

þ aK5
x�xKð Þ y�yKð Þ

h2
þ aK6

y�yKð Þ z�zKð Þ
h2

þ aK7
z�zKð Þ x�xKð Þ

h2

ð8Þ

Of course, when considering an analysis in two dimensions, we sim-
ply ignore all terms involving the third direction. The physical coor-
5

dinates x; y; z are interpolated using the natural coordinates as
when using the low-order finite element.

Our new overlapping finite element has the following
properties.

� The element is isotropic.
� The element is compatible with adjacent elements and provides
an element-internal continuous strain field.

� The element passes the patch test provided the nodal basis
function includes the linear polynomials.

� Different overlapping elements in a patch (e.g., 3-node and 4-
node elements) are compatible if we use the same value of b
for each element.

� When the p-th order polynomial basis is used, the element can
exactly reproduce any p-th order polynomial.

We discuss below (see Section 3) also the stability of the ele-
ment, that is, in discretizations using the element we must not
have a linear dependency of the governing equations.



Fig. 6. Effect of the order of polynomial basis on the condition number; the new 4-node quadrilateral overlapping element with b ¼ 0:01 is used in the undistorted and
distorted meshes; (a) Change of condition number with refinement of the undistorted mesh; (b) Change of condition number with refinement of the distorted mesh.

Fig. 7. Cantilever plate subjected to a surface traction; (a) Description of the problem; the plate is subjected to a uniformly distributed load p ¼ 1 N/m; (b) Meshes used; the
meshes are generated from the 4-node element meshes introduced in Fig. 4, by dividing a 4-node element into two 3-node elements.
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2.2. Imposition of Dirichlet boundary conditions

We impose the Dirichlet (displacement) boundary conditions
by using the appropriate nodal polynomials, similarly to enforcing
the displacement boundary conditions in the traditional finite ele-
ment method. For example, with a node K on a Dirichlet boundary,
we will encounter two cases, see Fig. 2, where we impose the ‘‘zero
displacement” boundary condition, on a two-dimensional analysis
domain. When the node is located at a point of a smooth boundary
as shown in Fig. 2a, we use the following nodal polynomial for
node K to impose the displacement boundary condition.

uK ¼ aK1gþ aK2ngþ higher� order terms ð9Þ
where the n- and g-directions are tangential and perpendicular to
the boundary, respectively.
6

In case the node is at a point of a non-smooth boundary, see
Fig. 2b, we use

uK ¼ aK1ngþ higher� order terms ð10Þ
In addition, the natural (force) boundary conditions are weakly

imposed as in traditional finite element analysis.

2.3. AMORE and coupling elements

The AMORE scheme discretizes the interior analysis domain
with regular undistorted traditional elements and the domains near
boundaries, that cannot be meshed with undistorted elements,
with overlapping finite elements [1].

In order to have regular and overlapping elements in a dis-
cretization, we need to formulate elements that have both overlap-



Fig. 8. Cantilever plate problem solved using the new 3-node triangular overlapping element with the quadratic basis, the traditional 6-node finite element, and the 3-node
finite element with linear covers; (a) Convergence of strain energy using the undistorted meshes (N = 2, 4, 8, . . ., 64); (b) Comparison between the strain energy errors
obtained using the undistorted and distorted meshes (N = 4, 16, and 64); note that the y-axis uses the linear scale; (c) Change of condition number with refinement of the
undistorted mesh; (d) Change of condition number with refinement of the distorted mesh.
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ping and traditional element nodes. For such coupling elements, we
construct w following the previously proposed method [1],

wI ¼
a for I 2 KFEP

K2KOFE
/I

K uK þPK2KFE
/I

Ka for I 2 KOFE

(
ð11Þ

with

a ¼
X

K2KOFE
hK aK1 þ

X
K2KFE

hK uK ð12Þ

where KOFE and KFE are the sets of overlapping and traditional ele-
ment nodes, respectively, and when the summation is over tradi-
tional finite element nodes (like in the last term) uK is the nodal
unknown of the traditional element node K .
3. Numerical aspects

The performance of the overlapping elements is based to a large
degree on the stability of the discretizations and the accuracy
reached in solutions. We first focus on the stability of the solution
7

scheme and then briefly also on the convergence and expected
accuracy of solutions.

The scheme is stable provided each element is stable (does not
contain any spurious mode) [12]. In the following, we show that
the overlapping elements pass the zero energy mode test when
the numerical integration schemes suggested below are used.

3.1. Numerical integration and zero energy mode test

The matrices of each overlapping element are evaluated using
the numerical integration schemes given in Table 1 [12].

The test inspects whether an unsupported element contains a
spurious zero energy mode. By unsupported element we mean that
all degrees of freedom (dofs) including all polynomial terms are
free. If a single element has no spurious mode for the integration
scheme used, a patch of elements will also not contain a spurious
mode. We test the undistorted and geometrically distorted ele-
ments shown in Fig. 3. We use E ¼ 2� 109 Pa, m ¼ 0:3, and
b ¼ 0:03 for all elements, and the plane stress case is considered
for two-dimensional elements.



Fig. 9. Effect of the order of polynomial basis on the condition number; the new 3-node overlapping element with b ¼ 0:01 is used for the undistorted and distorted meshes;
(a) Change of condition number with refinement of the undistorted mesh; (b) Change of condition number with refinement of the distorted mesh.

Fig. 10. Thin beam problem; (a) Description of the bending problem; total applied force is 1 N; (b) Parallelogram mesh used; (c) Trapezoidal mesh used.

Table 4
Normalized y-direction displacement at the tip (x = 6, y = 0); for the normalization the reference displacement is �0.1081 m.

9-Node FE (72 dofs) e = 0 m 0.1 0.2 0.3 0.4

Parallelogram 0.9901 0.9813 0.9397 0.8770 0.8252
Trapezoidal 0.9901 0.9811 0.9234 0.8422 0.7966

4-Node OFE (156 dofs) 0 0.1 0.2 0.3 0.4

Parallelogram 0.9909 0.9917 0.9925 0.9920 0.9905
Trapezoidal 0.9909 0.9913 0.9910 0.9903 0.9906
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Without a spurious mode, the two- and three-dimensional ele-
ments should have only three and six zero eigenvalues, respec-
tively. These zero eigenvalues correspond to rigid body modes
[12], where of course numerical round-off prevents to obtain
exactly zero eigenvalues. As we see in Tables 2 and 3, the two-
dimensional and three-dimensional elements pass the test. How-
ever, it is also seen that as the order of the polynomial basis we
use increases, the lowest non-zero eigenvalue decreases. This
8

decrease means in practice that the condition number of assem-
bled stiffness matrices increases as the order of the element basis
increases.

3.2. Positive definiteness of coefficient stiffness matrix

Since each overlapping element does not contain a spurious
zero energy mode, the use of these elements in an arbitrary mesh



Fig. 11. Description of the bracket problem; the bracket is subject to the varying
load p per unit length.

Fig. 12. Meshes used for the analysis of the bracket problem; the 4-node finite element
displacement-based finite element and then using the 4-node finite element with incom
mesh (1,560 dofs) use the bilinear basis and b = 0.03; an overlapping element node of t
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leads to a positive definite stiffness matrix, of course, provided
proper displacement boundary conditions have been imposed.
Hence the ‘‘linear dependency problem” in the governing equa-
tions observed in other generalized finite element methods is not
present in a discretization using these overlapping finite elements.
This is an important property of the discretization scheme.

Let us recall that, when using the finite element method with
covers, even removing all cover degrees of freedom at the bound-
aries with prescribed displacements will not remove the instability
for some elements, like for the 8-node brick element.

However, although a positive definite stiffness matrix is
obtained using the elements of the above tables, we need to inves-
tigate whether this matrix is well-conditioned – in the same way
as we also investigate the stiffness matrices of traditional and
any new finite element formulations.

We solve in Sections 4 and 5 various problems using the over-
lapping finite elements and observe that in the numerical solutions
of the problems considered, the new elements provide indeed
quite well conditioned stiffness matrices on various meshes. We
expected that the conditioning is acceptable and these solutions,
although limited, are valuable.
mesh (1,602 dofs) is employed for two analyses, first using the 4-node compatible
patible modes; both the 4-node overlapping element mesh (1,588 dofs) and AMORE
he AMORE mesh is marked as a node.



Fig. 13. von Mises stress distributions; the stress around the hole is underesti-
mated when the mesh using the traditional elements is employed while it is well
predicted when the 4-node OFE and AMORE meshes are used (see Table 5); also, the
stress fields predicted using the OFE and AMORE meshes are smoother.

Fig. 14. Absolute error distributions of von Mises stress.
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3.3. Distortion-insensitivity and convergence rates

A traditional geometrically distorted element may lose its poly-
nomial completeness and hence predictive capability [25]. This
loss deteriorates the solution accuracy, in particular when a coarse
mesh is used, and rather coarse meshes are often utilized in prac-
tice [12]. We have shown that our proposed overlapping elements
keep their polynomial completeness in reasonable distortions and
thus have robust predictive capability. We show in Sections 4 and
5 that the new overlapping elements are also quite distortion-
insensitive. For example, in Section 4.3, we observe that the 4-
node overlapping element using the quadratic basis is less sensi-
tive to distortion than the traditional 9-node element which also
preserves its quadratic completeness when angularly distorted
[12,25].

The distortion insensitivity also means that the convergence
rates are little affected by element distortions. For example, when
the p-th order polynomial basis is used, the formulation achieves
2p-th order convergence of strain energy error [12], of course,
when the problem solved has a sufficiently smooth solution [26]

E� Eh 6 c h2p ð13Þ
10
where E and Eh are the strain energies of the exact and numerical
solutions, respectively, h is the element size, and c is a constant.
We find that the overlapping finite elements may also provide a
small c which implies good accuracy. A small change in accuracy
of the solution when the mesh is distorted must be expected
because each element covers a different domain as it becomes
distorted.
3.4. Effect of b on accuracy and conditioning

The magnitude of the parameter b affects the solution accuracy
and the conditioning of the governing stiffness matrix. With b ! 0
we obtain the method of finite elements with interpolation covers
which reproduces polynomial fields one order higher than the
nodal polynomial used. Hence, as b ! 0 we obtain higher accuracy
in a solution. However, at the same time, using b ! 0 renders the
governing equations ill-conditioned because the finite element
method with interpolation covers is not stable when the displace-
ment boundary conditions are enforced using the scheme of Sec-
tion 2.2. We confirm these observations in our numerical tests
(see Sections 4.1 and 5.1). Given these element behaviors, it is
desirable to use an optimal value of b for both good accuracy and
a reasonable conditioning. Note that the described asymptotic
behaviors are found for both cases, b > 0 and b < 0. However, we
consider in this paper only the use of b > 0 since the use of b < 0
results in little difference of the numerical solutions.



Table 5
Numerical estimates for the bracket problem; the reference solutions for strain energy, maximum von Mises stress, maximum x-displacement ðumaxÞ, and minimum y-
displacement ðvminÞ are 1.0439 � 10�3N�m, 2.564 MPa, 5.230 � 10�5 mm, and �2.933 � 10�4 mm, respectively; all calculations shown in the table are normalized by the
reference solution.

Mesh Strain energy Maximum von Mises stress umax vmin

4-Node FE (1,602 dofs) 0.9867 0.8290 0.9784 0.9836
Incompatible (1,602 dofs) 0.9940 0.8721 0.9974 0.9929
4-Node OFE (1,588 dofs) 0.9961 0.9567 0.9912 0.9934
AMORE (1,560 dofs) 0.9933 1.0250 0.9947 0.9929

Fig. 15. Three-dimensional adhoc problem; (a) Description of the problem; (b) Meshes of tetrahedral elements; (c) Meshes of brick elements.

Fig. 16. Adhoc problem solved with the meshes of tetrahedral elements; (a) Convergence of strain energy; (b) Change of condition number with mesh refinement.
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Fig. 17. Adhoc problem solved with the meshes of brick elements; (a) Convergence of strain energy; (b) Change of condition number with mesh refinement.

Fig. 18. Effect of the order of polynomial basis on the condition number; b ¼ 0:01 is used; (a) Change of condition number with refinement of the new 4-node tetrahedral
overlapping element mesh; (b) Change of condition number with refinement of the new 8-node brick overlapping element mesh.
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4. Numerical tests of two-dimensional elements

In this section we solve several two-dimensional problems in
linear statics to study the performance of the new 3-node triangu-
lar and 4-node quadrilateral overlapping elements. We focus on
investigating the accuracy and conditioning of the new elements,
comparing the results also to the results obtained when using their
traditional finite element counterparts.

In the convergence curves we plot the strain energy errors ver-
sus the total number of degrees of freedom (dofs) because the dofs
are a better measure in this study than using the element size h.
Also, we use logarithmic measures unless otherwise indicated.

4.1. An adhoc problem

We first solve the two-dimensional adhoc problem illustrated
in Fig. 4, see Ref. [19], using the new 4-node quadrilateral overlap-
ping element with the quadratic polynomial basis. For the given
displacement field, the body force is calculated and imposed. We
12
use the solutions obtained with traditional 9-node elements for
comparisons. The results are given in Fig. 5.

As expected, the new overlapping finite element gives the opti-
mal convergence rate, and for a smaller b the overlapping element
achieves higher accuracy, see Fig. 5a. For a given number of degrees
of freedom, the overlapping finite element method provides better
accuracy than the finite element method. The sensitivity to mesh
distortion is illustrated in Fig. 5b, where we notice that the change
in error introduced by mesh distortion is quite small when the
overlapping finite element is used.

We also study the change of condition number with mesh
refinement. The condition number is defined as the ratio of the lar-
gest to the smallest eigenvalues of the stiffness matrix. As shown in
Fig. 5c and d, the use of the new 4-node overlapping element
results in a reasonably conditioned stiffness matrix, but the condi-
tion number increases as b decreases. Also, to some degree, the
condition numbers of the overlapping element models initially
decrease with mesh refinement and then stay almost constant in
further refinements.



Fig. 19. Three-dimensional meshes used for solving the problem of Section 4.3; (a) Parallelogram mesh using brick elements; (b) Trapezoidal mesh using brick elements; (c)
Parallelogram mesh using tetrahedral elements; (d) Trapezoidal mesh using tetrahedral elements.

Table 6
Normalized y-direction displacement calculated by the new overlapping finite element method; b ¼ 0:03 is used.

4-Node OFE (768 dofs) e = 0 m 0.1 0.2 0.3 0.4

Parallelogram 0.9747 0.9729 0.9692 0.9647 0.9603
Trapezoidal 0.9747 0.9705 0.9635 0.9554 0.9444

8-Node OFE (768 dofs) 0 0.1 0.2 0.3 0.4

Parallelogram 0.9841 0.9837 0.9831 0.9821 0.9806
Trapezoidal 0.9841 0.9834 0.9822 0.9812 0.9805

Table 7
Normalized y-direction displacement calculated by the new overlapping finite element method; b ¼ 0:01 is used.

4-Node OFE (768 dofs) e = 0 m 0.1 0.2 0.3 0.4

Parallelogram 0.9807 0.9810 0.9808 0.9800 0.9791
Trapezoidal 0.9807 0.9797 0.9782 0.9759 0.9728

8-Node OFE (768 dofs) 0 0.1 0.2 0.3 0.4

Parallelogram 0.9876 0.9877 0.9879 0.9878 0.9876
Trapezoidal 0.9876 0.9876 0.9875 0.9873 0.9872

Table 8
Normalized y-direction displacement calculated by the finite element method using the traditional 27-Node element; the 6 � 1 � 1 mesh is the mesh given in Fig. 19a or b, and
the 12 � 2 � 2 mesh is obtained by splitting the element edges of the 6 � 1 � 1 mesh in half and generating eight elements from an element.

27-Node FE 6 � 1 � 1 mesh (324 dofs) e = 0 m 0.1 0.2 0.3 0.4

Parallelogram 0.9784 0.9690 0.9267 0.8659 0.8169
Trapezoidal 0.9784 0.9682 0.9077 0.8296 0.7883

27-Node FE 12 � 2 � 2 mesh (1,800 dofs) 0 0.1 0.2 0.3 0.4

Parallelogram 0.9907 0.9895 0.9848 0.9745 0.9551
Trapezoidal 0.9907 0.9900 0.9884 0.9872 0.9861
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Additionally, we show in Fig. 6 that the use of a higher order
nodal basis leads to an increase of the condition number. We
expected this increase as mentioned in Section 3 where we noticed
that the use of a higher order polynomial basis results in a smaller
first nonzero eigenvalue in the element mode test.
13
4.2. A cantilever plate subjected to an in-plane surface traction

Next we solve the plane strain problem shown in Fig. 7, see Ref.
[10], using the new 3-node triangular overlapping element with
the quadratic polynomial basis. We consider also the traditional



Fig. 20. Description of machine tool jig problem; a uniformly distributed load p per unit length is applied, lengths in mm.

Fig. 21. Meshes used for solving the machine tool jig problem; (a) Traditional mesh using the 8-node brick element with incompatible modes (2,988 dofs); (b) AMORE mesh
(4,764 dofs); the overlapping element nodes use the linear polynomial basis and b ¼ 0:01.
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6-node finite element and the 3-node finite element with linear
covers [19]. As in the previous example, we study the accuracy,
conditioning, and sensitivity to mesh distortion of the
element. The reference solution is obtained using a mesh of
256 � 256 traditional 9-node finite elements. The results are
provided in Fig. 8.

For a given number of dofs, the use of the new 3-node overlap-
ping element provides better accuracy than both the traditional
6-node element and the 3-node finite element with linear covers.
We only present results using the overlapping finite element with
14
b ¼ 0:1 since the use of other values of b provides almost the same
solution accuracy in this problem. Considering the distortion-
sensitivity of the elements, we notice that the new 3-node overlap-
ping element is less sensitive to mesh distortions.

The condition numbers using the new 3-node overlapping finite
element method are reasonable and the trend in values with mesh
refinement is similar to that observed in the use of the new 4-node
overlapping element.

Also, as expected, the use of a higher order nodal basis leads to
an increased condition number, see Fig. 9.
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4.3. Thin beam problem

The thin beam problem considered here, see Fig. 10, has been
used in various studies to see the effect of mesh distortion on the
predictive capability of an element [1,11,15,27]. We use the dimen-
sion e to represent the degree of distortion and compare the solu-
tion accuracies when using the new 4-node overlapping finite
element and the traditional 9-node element. The 4-node overlap-
ping element uses the quadratic polynomial basis and b ¼ 0:03.

We solve for the y-direction displacement of the tip at point P
given by (x = 6, y = 0). As can be seen in Table 4, the use of the 4-
node overlapping element provides a more accurate solution than
using the 9-node element. In particular, the solutions using the
overlapping element are uniformly accurate with the same small
error regardless of the magnitude of e which does not hold when
using the 9-node element.

4.4. Bracket problem and AMORE scheme

Finally, we solve the bracket problem shown in Fig. 11 to study
the accuracy of the new overlapping finite element in the AMORE
scheme. As shown in Fig. 12, the problem is solved four times,
namely using: a mesh of 4-node compatible displacement-based
finite elements, the same mesh but of 4-node elements with
incompatible modes [12], a mesh of 4-node overlapping elements,
and finally an AMORE mesh. We use the bilinear polynomial basis
and b ¼ 0:03 for the overlapping element and AMORE meshes. For
use of AMORE the non-overlapping 4-node elements contain the
incompatible modes, with the coupling elements not carrying
these modes. In order to compare the predictive capabilities we
have selected the meshes to correspond to almost identical num-
bers of degrees of freedom. The reference solution is obtained
using a very fine mesh of 9-node elements with 116,238 dofs.

The calculated von Mises stress distributions and absolute
errors are shown in Figs. 13 and 14, respectively. The 4-node over-
lapping element and the AMORE scheme provide more accurate
stress fields than the meshes of traditional 4-node elements and
4-node elements with incompatible modes. Further results are
listed in Table 5 showing that the maximum von Mises stress is
substantially underestimated when the mesh using the traditional
displacement-based element or incompatible modes element is
used whereas the stress is well predicted when the overlapping
element and AMORE meshes are employed.
5. Numerical tests of three-dimensional elements

In this section, we solve linear static three-dimensional
problems to study the accuracy and conditioning of the new
4-node tetrahedral and 8-node brick overlapping elements. We
also consider the traditional finite elements for comparison.

5.1. An adhoc problem

We study the accuracy and conditioning of the new 4-node
tetrahedral and 8-node brick overlapping elements in the solution
of the adhoc problem shown in Fig. 15, see Ref. [16]. For the given
displacement field, the body force is calculated and imposed.

The results are presented as in the studies of Section 4.
First, we test the new 4-node tetrahedral overlapping element

using the quadratic polynomial basis with the meshes described
in Fig. 15b. Meshes using traditional 10-node elements and
4-node elements enriched by linear covers [19,20] are also
considered. As shown in Fig. 16a, the use of the 4-node overlapping
element provides better accuracy than the other elements for
about the same number of degrees of freedom used. The solutions
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using the 4-node overlapping element show the optimal conver-
gence rate as predicted by theory [11,26]. As in the two-
dimensional adhoc problem, the use of a smaller b results in higher
accuracy. The condition number of the stiffness matrix is also
examined, see Fig. 16b. A smaller b results in a higher condition
number, but the condition numbers are reasonable. Also, the num-
bers remain almost constant for the tested range of degrees of
freedom.

The new 8-node brick overlapping element with the quadratic
basis is also tested with the meshes shown in Fig. 15c. The results
are given in Fig. 17. The use of the new 8-node overlapping ele-
ment provides better accuracy than traditional 27-node elements
for a given number of degrees of freedom. The trend of the condi-
tion number with mesh refinement, see Fig. 17b, is the same as
that from the use of the new 4-node tetrahedral overlapping
element.

The effect of the order of the polynomial basis on the condition
number is further studied with refinement of the meshes, see
Fig. 18. As expected, for both the new tetrahedral and brick over-
lapping elements, an increase of the order of the basis leads to
an increase of the condition number.

5.2. Slender beam problem

We solve the problem used in Section 4.3 now in three dimen-
sions. The new 4-node tetrahedral and 8-node brick overlapping
elements with the quadratic basis are tested using the meshes in
Fig. 19. For comparison, we also solve the problem using traditional
27-node brick finite elements. The y-direction displacement at the
tip point P is predicted, and the reference displacement is
�0.1081 m.

Tables 6 and 7 give the displacement predictions when b is
equal to 0.03 and 0.01, respectively. Overall, the use of the 4-
node and 8-node overlapping elements gives accurate predictions,
which are quite insensitive to mesh distortions. The use of a smal-
ler b gives more accurate solutions and shows even less sensitivity
to the mesh distortions. For comparison, Table 8 gives the results
using the 27-node element.

5.3. Machine tool jig problem

To further study the effectiveness of the new overlapping ele-
ments and the AMORE scheme, we solve the three-dimensional
problem shown in Fig. 20, see Ref. [28]. We use the traditional
and AMORE meshes shown in Fig. 21 and compare the predictive
capabilities. The traditional mesh uses the traditional 8-node finite
element with incompatible modes. The AMORE mesh consists of 8-
node brick element with incompatible modes, 8-node
displacement-based coupling elements, and 8-node overlapping
elements. The coupling element is formulated as in Section 2.3.
All overlapping element nodes use the linear polynomial basis
and b ¼ 0:01. The reference solution is obtained using a very fine
mesh of 27-node finite elements of 717,282 dofs.

The normalized strain energies obtained with the traditional
and AMORE meshes are 0.9561 and 0.9559, respectively, with the
reference strain energy = 10.34 N�m. Along Line 1 (see Fig. 20),
the z-direction displacement and normal stress in the y direction
are evaluated. As can be seen in Fig. 22, both analyses give reason-
able predictions. We also examine the von Mises stress distribution
on Surface 1 (see Fig. 20). The stress distributions and the absolute
error are given in Figs. 23 and 24, respectively. The solution using
the AMORE mesh provides better stress predictions, particularly in
the regions of stress concentrations.

While we give in Fig. 21 the total number of degrees of freedom
used for the meshes, we do not report any solution times, since for
such comparison an effective sparse solver would need to be



Fig. 23. von Mises stress distributions on Surface 1.

Fig. 24. Absolute error distributions of von Mises stress on Surface 1.

Fig. 22. Numerical results for the machine tool jig problem along Line 1 shown in Fig. 20; the 8-node ICM label corresponds to the 8-node brick element with incompatible
modes; (a) z-direction displacement; (b) normal stress in the y direction (averaged at nodes).
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employed. The solutions given here have been obtained with a rel-
atively simple MATLAB code.
6. Concluding remarks

We have presented two- and three-dimensional overlapping
elements with enhancements that we consider valuable for the
general analyses of solids.

Firstly, the elements are formulated without an ‘‘explicit” func-
tion to be interpolated, hence no radii as for the method of finite
spheres [2] and the earlier proposed overlapping elements are used
[9]. However, a parameter b is employed which implicitly means
that a function is interpolated. This way to proceed is more direct
16
and simpler, and we have obtained good results when the value of
b is set to be constant (=0.01) throughout all solutions.

Secondly, the elements show stability and resulted in reason-
able condition numbers in the solutions we presented. As men-
tioned in the paper, generalizing or enriching finite element
discretizations can introduce a linear dependency of the governing
equations. This linear dependency has been addressed by various
but not satisfactory schemes. Our formulation of the overlapping
finite elements gives always a positive definite stiffness matrix,
as long as b–0, and reasonable condition numbers which however
increase as b decreases. This increase is expected since when b ¼ 0
the overlapping elements are elements with interpolation covers.

We have discussed and illustrated the above observations in the
solutions of various two- and three-dimensional problems and also
when using the AMORE scheme. These experiences show that the
enhancements are valuable and provide further evidence of the
usefulness of overlapping finite elements.

However, many more studies are needed. These pertain to var-
ious areas relating to the overlapping finite elements and the
AMORE scheme. For example, the solution times should be studied
using an effective implementation of the solution methods, and the
further development of the schemes in frequency solutions, tran-
sient analyses, and general nonlinear analyses need to be pursued.



S. Lee and K.J. Bathe Computers and Structures 260 (2022) 106704
Furthermore, for an effective use of AMORE, efficient AMORE
meshing procedures for two- and three-dimensional geometries
need to be developed, such that the meshing effort in AMORE is
much smaller than in traditional finite element meshing when
complex geometries are considered. In fact, it is the premise to ren-
der the AMORE scheme attractive by meshing the bulk volume of a
complex three-dimensional geometry with, for example, undis-
torted brick elements (that give a coarse grid and are computation-
ally effective to generate) and the rest of the total geometry with
overlapping tetrahedral elements that can be highly distorted
[1,7]. Although the number of equations to be solved for the
AMORE model will then be in many cases larger than for the tradi-
tional model (to reach the same solution accuracy), since the time
for meshing is much less, the total time spent on the analysis is
much reduced.
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Appendix A. Nodal values for the interpolation of /I
K

In the new OFE formulation, as in our prior works, the function /I
K

is interpolated using a traditional higher order finite element that
Table A1
Fictitious nodal values for the interpolation of /I

K of the 3-node triangular element.

Nodes i = 1 2 3

/̂
1
1i

1

/̂
1
2i

1

/̂
1
3i

1

/̂
2
1i

1

/̂
2
2i

1

/̂
2
3i

1

/̂
3
1i

1

/̂
3
2i

1

/̂
3
3i

1

Table A2
Fictitious nodal values for the interpolation of /I

K of the 4-node quadrilateral element.

Nodes i = 1 2 3 4

/̂
1
1i

1

/̂
1
2i

1

/̂
1
3i

1

/̂
1
4i

1

/̂
2
1i

1

/̂
2
2i

1

/̂
2
3i

1

/̂
2
4i

1

/̂
3
1i

1

/̂
3
2i

1

/̂
3
3i

1

/̂
3
4i

1

/̂
4
1i

1

/̂
4
2i

1

/̂
4
3i

1

/̂
4
4i

1
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has mid-side nodes. We present below the nodal values for the
interpolation of /I

K . Here, A ¼ 0:5� b, B ¼ 0:5þ b, and an
empty cell represents the value of zero. The node numbering
is given in Fig. A1 (see Tables A1–A5). We note that alwaysPN

K¼1/
I
K ¼ 1.
Appendix B. Derivation of nodal values for the interpolation of
/I

K and Eq. (6)

We do not explicitly interpolate a function to construct /I
K , but

it is worth noting that /I
K can be obtained by interpolating a func-

tion and such function is not unique. For example, we can obtain
the nodal values in Appendix A by assuming that we interpolate
the following function over an element

UI
K ¼ WI

KP
J2NW

I
J

WI
J ¼

chJðxÞ2 for I ¼ J

hJðxÞ for I–J

( ðB:1Þ

where N is the index set of nodes of the element, c is a free
parameter, and hJðxÞ is the low order finite element function. Con-
sidering the 3-node triangular overlapping element, we derive
some nodal values to demonstrate that the interpolation of UI

K

results in /I
K

4 5 6

A A

B 0.5

0.5 B

B 0.5

A A

B 0.5

0.5 B

0.5 B

A A

5 6 7 8

A A

B 0.5

0.5 0.5

0.5 B

B 0.5

A A

B 0.5

0.5 0.5

0.5 0.5

0.5 B

A A

B 0.5

0.5 B

0.5 0.5

0.5 B

A A



Table A3
Fictitious nodal values for the interpolation of /I

K of the 4-node tetrahedral element.

Nodes i = 1 2 3 4 5 6 7 8 9 10

/̂
1
1i

1 A A A

/̂
1
2i

1 B 0.5 0.5

/̂
1
3i

1 0.5 B 0.5

/̂
1
4i

1 B 0.5 0.5

/̂
2
1i

1 B 0.5 0.5

/̂
2
2i

1 A A A

/̂
2
3i

1 B 0.5 0.5

/̂
2
4i

1 0.5 B 0.5

/̂
3
1i

1 0.5 B 0.5

/̂
3
2i

1 0.5 B 0.5

/̂
3
3i

1 A A A

/̂
3
4i

1 0.5 0.5 B

/̂
4
1i

1 0.5 0.5 B

/̂
4
2i

1 0.5 0.5 B

/̂
4
3i

1 0.5 0.5 B

/̂
4
4i

1 A A A

Table A4
Fictitious nodal values for the interpolation of /I

K of the 8-node brick element (I = 1, 2, 3, 4).

Nodes i = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

/̂
1
1i

1 A A A

/̂
1
2i

1 B 0.5 0.5

/̂
1
3i

1 0.5 0.5 0.5

/̂
1
4i

1 0.5 B 0.5

/̂
1
5i

1 0.5 0.5 B

/̂
1
6i

1 0.5 0.5 0.5

/̂
1
7i

1 0.5 0.5 0.5

/̂
1
8i

1 0.5 0.5 0.5

/̂
2
1i

1 B 0.5 0.5

/̂
2
2i

1 A A A

/̂
2
3i

1 B 0.5 0.5

/̂
2
4i

1 0.5 0.5 0.5

/̂
2
5i

1 0.5 0.5 0.5

/̂
2
6i

1 0.5 0.5 B

/̂
2
7i

1 0.5 0.5 0.5

/̂
2
8i

1 0.5 0.5 0.5

/̂
3
1i

1 0.5 0.5 0.5

/̂
3
2i

1 0.5 B 0.5

/̂
3
3i

1 A A A

/̂
3
4i

1 B 0.5 0.5

/̂
3
5i

1 0.5 0:5 0:5

/̂
3
6i

1 0.5 0.5 0:5

/̂
3
7i

1 0.5 0.5 B

/̂
3
8i

1 0.5 0.5 0.5

/̂
4
1i

1 0.5 B 0.5

/̂
4
2i

1 0.5 0.5 0.5

/̂
4
3i

1 0.5 B 0.5

/̂
4
4i

1 A A A

/̂
4
5i

1 0.5 0.5 0.5

/̂
4
6i

1 0.5 0.5 0.5

/̂
4
7i

1 0.5 0.5 0.5

/̂
4
8i

1 0.5 0.5 B
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Table A5
Fictitious nodal values for the interpolation of /I

K of the 8-node brick element (I = 5, 6, 7, 8).

Nodes i = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

/̂
5
1i

1 0.5 0.5 B

/̂
5
2i

1 0.5 0.5 0.5

/̂
5
3i

1 0.5 0.5 0.5

/̂
5
4i

1 0.5 0.5 0.5

/̂
5
5i

1 A A A

/̂
5
6i

1 B 0.5 0.5

/̂
5
7i

1 0.5 0.5 0.5

/̂
5
8i

1 0.5 B 0.5

/̂
6
1i

1 0.5 0.5 0.5

/̂
6
2i

1 0.5 0.5 B

/̂
6
3i

1 0.5 0.5 0.5

/̂
6
4i

1 0.5 0.5 0.5

/̂
6
5i

1 B 0.5 0.5

/̂
6
6i

1 A A A

/̂
6
7i

1 B 0.5 0.5

/̂
6
8i

1 0.5 0.5 0.5

/̂
7
1i

1 0.5 0.5 0.5

/̂
7
2i

1 0.5 0.5 0.5

/̂
7
3i

1 0.5 0.5 B

/̂
7
4i

1 0.5 0.5 0.5

/̂
7
5i

1 0.5 0.5 0.5

/̂
7
6i

1 0.5 B 0.5

/̂
7
7i

1 A A A

/̂
7
8i

1 B 0.5 0.5

/̂
8
1i

1 0.5 0.5 0.5

/̂
8
2i

1 0.5 0.5 0.5

/̂
8
3i

1 0.5 0.5 0.5

/̂
8
4i

1 0.5 0.5 B

/̂
8
5i

1 0.5 B 0.5

/̂
8
6i

1 0.5 0.5 0.5

/̂
8
7i

1 0.5 B 0.5

/̂
8
8i

1 A A A
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/̂
1
11 ¼ U1

1ðx1Þ ¼ ch1ðx1Þ2
ch1ðx1Þ2þh2ðx1Þþh3ðx1Þ

¼ c
cþ0þ0 ¼ 1

/̂
1
14 ¼ U1

1ðx4Þ ¼ ch1ðx4Þ2
ch1ðx4Þ2þh2ðx4Þþh3ðx4Þ

¼ 0:25c
0:25cþ0:5þ0 ¼ 0:5� 2�c

2ð2þcÞ

/̂
1
24 ¼ U1

2ðx4Þ ¼ h2ðx4Þ
ch1ðx4Þ2þh2ðx4Þþh3ðx4Þ

¼ 0:5
0:25cþ0:5þ0 ¼ 0:5þ 2�c

2ð2þcÞ

/̂
1
25 ¼ U1

2ðx5Þ ¼ h2ðx5Þ
ch1ðx5Þ2þh2ðx5Þþh3ðx5Þ

¼ 0:5
0þ0:5þ0:5 ¼ 0:5

/̂
2
12 ¼ U2

1ðx2Þ ¼ h1ðx2Þ
h1ðx2Þþch2ðx2Þ2þh3ðx2Þ

¼ 0
0þcþ0 ¼ 0

ðB:2Þ

where we notice that 2�c
2ð2þcÞ is equivalent to b in the formulation.

As mentioned, we can derive the nodal values using various
functions. Another example is

UI
K ¼ WI

KP
J2N WI

J

WI
J ¼

chJðxÞ for I ¼ J

hJðxÞ for I–J

� ðB:3Þ

in which 1�c
2ð1þcÞ is equivalent to b of the formulation.

Next we show how Eq. (6) is reached for the triangular overlap-
ping element. By definition, the qK are
19
q1 ¼ h1/
1
1 þ h2/

2
1 þ h3/

3
1

q2 ¼ h1/
1
2 þ h2/

2
2 þ h3/

3
2

q3 ¼ h1/
1
3 þ h2/

2
3 þ h3/

3
3

ðB:4Þ

Using the nodal values given in Appendix A, we obtain

q1 ¼ h1 ĥ1 þ Aĥ4 þ Aĥ6

� �
þ h2 ĥ1 þ Bĥ4 þ 0:5ĥ6

� �
þ h3 ĥ1 þ 0:5ĥ4 þ Bĥ6

� �
q2 ¼ h1 ĥ2 þ Bĥ4 þ 0:5ĥ5

� �
þ h2 ĥ2 þ Aĥ4 þ Aĥ5

� �
þ h3 ĥ2 þ 0:5ĥ4 þ Bĥ5

� �
q3 ¼ h1 ĥ3 þ 0:5ĥ5 þ Bĥ6

� �
þ h2 ĥ3 þ Bĥ5 þ 0:5ĥ6

� �
þ h3 ĥ3 þ Aĥ5 þ Aĥ6

� �
ðB:5Þ

But the ĥ1; ĥ2; and ĥ3 can be expressed as [12]

ĥ1 ¼ h1 � 0:5ðĥ4 þ ĥ6Þ
ĥ2 ¼ h2 � 0:5ðĥ4 þ ĥ5Þ
ĥ3 ¼ h3 � 0:5ðĥ5 þ ĥ6Þ

ðB:6Þ

where ĥ4 ¼ 4h1h2; ĥ5 ¼ 4h2h3; and ĥ6 ¼ 4h3h1.
Substituting Eq. (B.6) into Eq. (B.5), we obtain



Fig. A1. Node numbering for the new overlapping finite elements.
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q1 ¼ h1 h1 þ ðA� 0:5Þĥ4 þ ðA� 0:5Þĥ6

� �
þ h2 h1 þ ðB� 0:5Þĥ4

� �
þ h3 h1 þ ðB� 0:5Þĥ6

� �
q2 ¼ h1 h2 þ ðB� 0:5Þĥ4

� �
þ h2 h2 þ ðA� 0:5Þĥ4 þ ðA� 0:5Þĥ5

� �
þ h3 h2 þ ðB� 0:5Þĥ5

� �
q3 ¼ h1 h3 þ ðB� 0:5Þĥ6

� �
þ h2 h3 þ ðB� 0:5Þĥ5

� �
þ h3 h3 þ ðA� 0:5Þĥ5 þ ðA� 0:5Þĥ6

� �
ðB:7Þ

Then substituting A ¼ 0:5� b and B ¼ 0:5þ b

q1 ¼ h1 þ h2 þ h3ð Þh1 þ bðh2 � h1Þĥ4 þ bðh3 � h1Þĥ6

q2 ¼ h1 þ h2 þ h3ð Þh2 þ bðh1 � h2Þĥ4 þ bðh3 � h2Þĥ5

q3 ¼ h1 þ h2 þ h3ð Þh3 þ bðh2 � h3Þĥ5 þ bðh1 � h3Þĥ6

ðB:8Þ

Since h1 þ h2 þ h3 ¼ 1 we have Eq. (6)

q1 ¼ h1 þ bðh2 � h1Þĥ4 þ bðh3 � h1Þĥ6

q2 ¼ h2 þ bðh1 � h2Þĥ4 þ bðh3 � h2Þĥ5

q3 ¼ h3 þ bðh2 � h3Þĥ5 þ bðh1 � h3Þĥ6

ðB:9Þ

Eq. (6) is obtained similarly for the other elements.
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